
   
 
 
 
 

 

 

 

 
 

Best Practices 
for Software 
Development 
Asset (SDA) 
Reuse  
 



 
 

 

 
©2005 LogicLibrary, Inc.  2

Best Practices for Software Development Asset (SDA) Reuse 

Introduction 

Everyone agrees that reuse of software development assets (SDAs) is a 

“good thing” and that service-oriented architectures (SOAs) require 

organizations to institutionalize services as reusable assets.  

Nonetheless, there is considerable debate within IT organizations as 

to how to “get from here to there” – i.e., how to move from the 

current state of IT project development, with its emphasis on 

immediate, time-driven project objectives, to “SOA nirvana” with 

flexible, loosely-coupled services that are produced from 

requirements driven by core business processes, meet near-term 

objectives and facilitate strategic business enablement.  Not an easy 

task, but it is possible to move towards this goal incrementally by 

viewing development processes from the perspectives of SDA 

production, distribution and consumption.  

 

Some Terminology 

To set the stage for the discussion, let’s begin with definitions for 

SDA and SOA.   

SDAs: Knowledge Assets and Executables with Maintainability,                              
Discoverability and Consumability 
What is an SDA?  Simply put, it is “something of value to an IT 

organization.”  This definition is generic for a reason: development 

assets are so wide-ranging that an all-encompassing definition must 

be necessarily vague; however, it can be clarified by example.   

Within the world of SDAs, there are two major types of assets: 

knowledge assets and executable assets.  Knowledge assets consist of 

information used by the IT organization to do its work more 

consistently, efficiently and effectively.  Examples of knowledge 

assets include architectures, design patterns, processes, templates, 

etc.  Executable assets are the things most technical people think of 

when discussing reuse: components, services, APIs, schemas and other 

deployable packages.  SDAs of both types are meant to be reused, so 

special care must be taken in their production. 



 
 

 

 
©2005 LogicLibrary, Inc.  3

Best Practices for Software Development Asset (SDA) Reuse 

What makes an asset reusable?  For example, does a J2EE component 

become an asset simply by providing its jar file?  Probably not, 

unless the component’s functionality is extremely simple and very 

obvious.  While the deployable jar is a very important work product 

(i.e., artifact) of the software development process, it does not 

make the component an asset in and of itself.  In order for something 

to be considered an asset to the IT organization, it must be 

maintainable, discoverable and consumable.   

 

•  Maintainability introduces such concepts as version control 

(discussed in more detail below), models and other design 

documentation, as well as requirements traceability (why the 

asset was implemented in this way from a technical and business 

perspective).   

•  Discoverability means potential consumers of an asset can find 

it in a timely fashion – for example, via keywords, domain 

taxonomies or models to which the assets are mapped. 

•  Consumability involves looking at an asset from the point of 

view of a future project that might use the asset: are a user 

guide, a well documented API, sample client code and other 

artifacts available to help the user rapidly understand how to 

apply the asset to a project?  Are dependencies to other assets 

(and to prior versions of this asset) specified and easily 

navigated? 

 

The process of building an asset creates metadata that represents the 

asset – describing the asset from various points of view.  This 

metadata presents a composite view of the asset across its entire 

development and deployment lifecycle, with indexes (or references) 

into the various point tools that hold the work products associated 

with the asset, such as document management systems, requirements 

management systems, version control repositories, defect tracking 

systems, test automation tools, etc.  



 
 

 

 
©2005 LogicLibrary, Inc.  4

Best Practices for Software Development Asset (SDA) Reuse 

SOA Key Concepts: Core Application Functions, Coarse-Grained Services                          
and Message-Oriented Infrastructure 
For a concept that has probably reached the peak of its hype cycle, a 

surprising amount of debate and confusion over what constitutes a 

service-oriented architecture continues to exist.  Much of this 

debate tends to get stuck in technical details, perhaps because the 

technology infrastructure most frequently associated with SOA - Web 

services – is still maturing as standards evolve and organizations 

like WS-I define preferred interoperational modes of service 

deployment.  In short, conversations about SOA seem to stall at the 

technical level because Web service technology remains in flux.   

 

Looking beyond pure technology, some core concepts rise above the 

technical muck to help define the fundamentals of a service-oriented 

architecture.  An SOA provides for the definition and delivery of 

core application functions through a series of coarse-grained 

services meant to be assembled through a message-oriented 

infrastructure.   

 

Enabling Core Application Functions 

First, an SOA must support the delivery of core application 

functions.  To clarify, this is not a comment about releasing 

applications.  It is a statement about enabling a development process 

that delivers business value by being flexible and responsive so 

high-quality applications are delivered faster, for better service 

and competitive advantage.  An SOA must yield appropriately decoupled 

services that can support multiple applications – both end-user 

(customer, partner, and internal) and machine-facing – without 

service reimplementation.  Services must be reusable without major 

rework, or they just add Yet Another Layer Of Technology (YALOT) to 

an already messy technical infrastructure. 

 

Coarse-Grained Services – “Right-Sized” for Application Assembly 

Services within an SOA must be sufficiently coarse-grained to enable 

meaningful assembly of applications.  Right-sizing services for this 

purpose is one of the more challenging issues facing architecture 

teams instituting an SOA.  At one extreme, services which support 



 
 

 

 
©2005 LogicLibrary, Inc.  5

Best Practices for Software Development Asset (SDA) Reuse 

“get customer’s middle name” (for example) are far too fine-grained 

for easy reuse in application assembly (and any resulting 

applications built from such services will perform abysmally), while 

services that implement top-level, end-user-facing business 

processes, such as “close accounting books for fiscal year,” are too 

broad and completely impractical to implement. Finding the right 

middle ground of services that can support multiple business 

processes with appropriate granularity is probably the biggest 

challenge to an IT organization. 

 

Tying Services Together with a Message-Oriented Infrastructure 

Services are of no use if they cannot be consumed within actual 

applications.  Tying them together into business process flows is 

typically completed through message passing, often with an 

orchestration engine of some sort maintaining the long-running 

process state. 

 

Getting to “SOA Nirvana”  
With terminology established, it is time to discuss how an 

organization can begin to roll out an effective SOA strategy.  This 

conversation does not start with the bits and bytes of SOA 

infrastructure.  Such an infrastructure is clearly necessary as a 

technology underpinning to support a deployed SOA, but it is 

insufficient as a guide for SOA definition and development.  The most 

appropriate place to start the dialogue is with proper architectural 

and project governance, which is required to “put your IT house in 

order.”   These processes prioritize the development of services 

while keeping the broader objectives of SOA in mind.  They also 

ensure that services are built with sufficient security, quality and 

consumability so that downstream consumers can easily find, 

understand and register their use of the services in application and 

business process integration projects. 

 

All of these objectives fit under the umbrella of “SOA governance,” 

the means by which enterprise architecture teams oversee IT 



 
 

 

 
©2005 LogicLibrary, Inc.  6

Best Practices for Software Development Asset (SDA) Reuse 

development projects and IT project teams provide feedback on that 

guidance.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Within this “big-animal” governance lifecycle, a supporting lifecycle 

for asset reuse becomes visible: asset production, asset 

distribution, and asset consumption.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
©2005 LogicLibrary, Inc.  7

Best Practices for Software Development Asset (SDA) Reuse 

The remainder of this paper discusses five best practices within the 

asset-reuse lifecycle. 

 

Asset Reuse Best Practices 
 
Best Practice #1: Pragmatic Service Interface Modeling and Definition 

Going back to the original definition of SOA, one of the key aspects 

of an SOA is that the services defined and deployed within the 

architecture must provide core application functions to potential 

consumers.  This is easier said than done.  Services within an SOA 

cannot be effectively developed in a “bottom-up,” ad-hoc manner.  

Bottom-up development of services is inherently driven by immediate 

project needs – how do I solve this specific problem with a specific 

implementation (often driven by the influence of existing 

applications and their behaviors masquerading as true business 

requirements).  What happens when an organization defines and 

implements its services with this mindset?  The service layer simply 

becomes YALOT – more spaghetti code that implements a monolithic 

application in a different technology instead of improving business 

process flexibility. 

 

But, services also cannot be defined solely in a “top-down” manner.  

Top-down business process analysis left to its own devices often 

leads to one of two outcomes: “analysis paralysis,” continual 

refinement of a model hoping to reach perfection (which never comes), 

or “Big-Bang” projects that try to “boil the ocean” – defining and 

implementing everything at once, usually with disastrous consequences 

(“death march” projects, schedule slips and/or cost overruns).   

 

So where to go from here? The objective is to design and implement 

business services that support the immediate project’s requirements 

with enough flexibility to meet future business process needs, both 

projected and unknown.  This is a pretty stiff challenge and one that 

is not likely to be met in a single step. In reality, there must be a 

pragmatic balance between where the business is and where it needs to 

go, moving services towards the objective in iterations. 



 
 

 

 
©2005 LogicLibrary, Inc.  8

Best Practices for Software Development Asset (SDA) Reuse 

 

These iterations should move the service towards the goal of building 

a coarse-grained business architecture (or model).  The coarse-

grained business model should be driven by key business processes 

(initially, a representative set of high-priority processes).  

Architects and business analysts should use these processes to 

extract and define a normalized set of functions that are grouped 

together based on behavioral affinity (or, in UML terms, components 

and interfaces) to create a straw-man set of initial, target 

definitions for the services.  This effort creates a roadmap for 

prioritized service definition and development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Has the exact set of services and operations been defined as a result 

of this top-down modeling activity?  Of course not, but it has 

produced a starting point for the real work – the detailed analysis, 

design and implementation of the services necessary for the current 

set of prioritized projects.  The needed services are identified from 

the business reference model, based on business process (and project) 

Analytical System <<comp spec>> 
Reporting 

Prediction 

Import

Quote 

Shipping System <<comp spec>> 

ShippingMethod Management 

ShippingStatus 
ShippingRequest

Order System
<<comp spec>>

OrderMaintanance

SalesTaxCalculation

SalesTaxCalculator
<<comp spec>>

Conversion

Currency Exchange 
System 

<<comp spec>>

CurrencyMaintanance 

Financial  
Accounting 

<<comp spec>> 
FinancialReportingSales Transaction

Payments

CreditCard Handler <<comp spec>> 
Verification



 
 

 

 
©2005 LogicLibrary, Inc.  9

Best Practices for Software Development Asset (SDA) Reuse 

prioritization, and their definitions are formalized.  Ideally, each 

service definition should be driven by the requirements extracted 

from at least two separate processes.  Otherwise, designing a service 

based on a single use case will probably result in a fragile, 

narrowly-defined service that will not be flexible enough to meet the 

needs of the next set of prioritized projects.  Formalizing service 

definitions may lead to modifications in the reference model, 

including the identification of new services – which is just fine!  

This is the first step in iteratively refining the business 

architecture. 

 

Once the service interface is specified, project teams can proceed 

with detailed service design and implementation.  Often, this means 

assessing the current set of production applications to understand 

which aspects of the applications are candidates to support required 

services, and then combining and re-factoring application 

capabilities by implementing adapters that provide the necessary glue 

and compensation logic.  Usually, these adapters are implemented 

behind a component façade which may have been generated from the 

original service definition, as specified in WSDL (or, alternatively, 

service operations may have been defined as methods on a component 

interface, with a WSDL document and service client proxy code 

generated from that starting point). 

 

Best Practice #2: Production Lifecycle Review Points 

As mentioned above, we need to ensure that the defined and 

implemented services are properly aligned with the enterprise 

architecture, use correct implementation techniques and technologies, 

and provide enough supporting information to enable potential 

consumers to rapidly discover and understand them.  How is this 

accomplished?  By applying appropriate review points in the software 

development lifecycle (SDLC) and defining a virtual/matrixed SDA 

architectural review team to complete these reviews. 

 

 

 

 



 
 

 

 
©2005 LogicLibrary, Inc.  10

Best Practices for Software Development Asset (SDA) Reuse 

Who should be on this review team?  

 

•  A team leader drawn from the enterprise architecture 

organization whose dedicated responsibility is building a 

successful SDA reuse program. 

•  Matrixed team members drawn from participating project teams.  

The members should have lead designer/developer skills, and 

their work on this team should be recognized and allocated as 

10%-20% of their job responsibility.  Assignment to this team 

should be promoted as a talent-recognition award and a growth 

assignment for the individuals involved.  A rotating membership 

(perhaps six to 12 months in duration) serves to train younger 

developers in architectural principles and then allows them to 

carry that knowledge back to their project teams, increasing the 

overall skill level of those teams. 
 

Consideration should also be given to including members from the 

business analyst organization to ensure that the business 

functionality defined by a service truly reflects the enterprise’s 

requirements. 

 

The primary responsibility of the team is to review services under 

development.  The objectives of this review will vary depending upon 

the stage within the SDLC to which a particular service has 

progressed.  At a minimum, it is recommended that organizations 

review services under development at the following points in the 

SDLC: 

 

•  Requirements complete: All business requirements are documented 

and the initial service definition has been specified (ideally 

as WSDL) so reviewers can validate the service against its 

business architectural context. 

•  Design complete: The implementation approach has been defined 

with sufficient documentation (e.g., UML design models 

completed, relevant legacy APIs identified) to allow reviewers 

to validate the design against technical and 

application/integration architectural contexts. 



 
 

 

 
©2005 LogicLibrary, Inc.  11

Best Practices for Software Development Asset (SDA) Reuse 

•  Implementation complete: The service has been implemented and 

deployed in a test environment, with sufficient supporting 

documentation (e.g., sample client code, automated/manual test 

cases and test results, usage guide) to enable a potential 

consumer to understand the service and trust its quality and 

stability. 

 

Other review points may also be appropriate based on organizational 

needs and objectives.  However, do not overwhelm development teams 

with process for the sake of process.  They will quickly revolt 

against jumping through seemingly arbitrary hoops.  The objective 

should be “just enough process” to provide appropriate guidance at 

key points in the production and consumption lifecycles to keep 

things on track.  Just as right-sizing a service may be iterative, 

finding the right level of process control for the organization may 

be iterative also.  Consider starting with as “light” a process as is 

feasible and adding more process steps only as needed.   

 

Appropriate tooling can greatly assist organizations in effectively 

deploying their governance processes. In fact, applying process to 

product in a pilot project is an ideal way to validate and 

iteratively refine the process.  Industry expert Donald J. Reifer, 

when discussing how to implement a practical reuse program, states, 

“…using a pilot project to demonstrate the value added from a well-

designed and deployed infrastructure is highly encouraged. Pilot 

projects force senior managers, middle managers and technologists to 

determine how to take the technology and use it in concert with the 

organization’s process under real budget, schedules and constraints.”1  
 

Once a service’s review has been completed, the team makes it 

available to the broader community.  An asset metadata library can be 

of great assistance in this process since it provides automated asset 

validation and supports the steps in the review process with 

configurable, role-based approval mechanisms that include 

notifications and audit trail functionality.  After publication to a 

                                                 
1Donald J. Reifer , “Implementing a Practical Reuse Program,” Component-Based Software Engineering, pp. 453-466 



 
 

 

 
©2005 LogicLibrary, Inc.  12

Best Practices for Software Development Asset (SDA) Reuse 

metadata library, potential consumers are free to discover the 

service and its capabilities, provide feedback and incorporate the 

service into their development projects. 

 

It is likely that implementing an SDA review team will have some very 

useful side effects.  Forming such a team can break down 

organizational barriers, helping to mitigate any potential political 

issues associated with a reuse initiative.  Simply put, creating this 

type of team can eliminate the “us vs. them” mentality that often 

occurs when governance organizations and top-down processes are 

imposed on development organizations.  The review team also is likely 

to discover additional opportunities for reusable services (and 

enhancements that make existing services more robust and reusable) 

through their informal communication. This “active discovery” of new 

reusable capabilities can accelerate the creation and adoption of 

services within the SOA initiative. 

 

Best Practice #3: Managing Produced Services as Internal “Products” 

As services begin to roll out and are consumed within projects, an 

organization will rapidly reach the point where the next set of 

business process requirements affects one or more of the existing 

services.  How will the new process be supported while preserving a 

stable operating environment for existing service consumers?  Because 

services (like components) are meant to be used in more than one 

application, organizations need to plan for the incremental 

enhancement of their services over a long deployment lifetime.  In 

effect, organizations planning to build a robust, stable and 

extensible SOA need to treat their services as “products.” 

 

What does treating a service as a “product” mean to an IT 

organization? 

 

•  Each produced service must have a regular and well-defined 

release cycle.  This release cycle needs to occur often enough 

to meet consumer needs on a timely basis, but not so often as to 

churn existing consumers.  Typically, a release cycle between 

three and six months is appropriate for most organizations, 



 
 

 

 
©2005 LogicLibrary, Inc.  13

Best Practices for Software Development Asset (SDA) Reuse 

allowing them to meet new service needs without unduly 

disrupting existing applications. 

•  Services must preserve backward compatibility wherever possible.  

Deprecation techniques provide time to migrate to newer service 

releases by identifying obsolete operations and notifying 

existing consumers that the operation will be removed from 

future releases of a service interface (also known as “end of 

life-ing” in product management terms).  Service providers 

should offer n-1 version support at a minimum – all services 

provided in the prior version (except those marked as 

deprecated) should be preserved intact in the current version.  

In addition, consider providing a “grace period” where both 

service versions are supported so consumers can make any 

necessary changes to integrate the updated service.  Dynamic 

runtime binding techniques via a Web services management 

infrastructure (e.g., service proxies or UDDI-based late 

binding) can also simplify the process of migration from an 

older service to a new version. 

•  A mechanism must be established by the enterprise architecture 

team and service-review team to gather new requirements and 

enhancements for services.  Consider establishing a “product 

manager” role within these organizations to manage and 

prioritize the aggregate set of business requirements for a 

service.  The product manager should solicit feedback from 

current and potential consumers of the service, consolidate 

those requirements and codify them (with the assistance of the 

enterprise architecture team) for eventual implementation by 

service development teams.  

 

Treating services as “products” has a clear impact on SDLC tools used 

within the development teams.  Some examples of these impacts 

include: 

 

•  Version Control.  Be prepared to establish a source code 

baseline within the version control repository whenever a new 

version of a service is released into production (or create a 

thread label for later use as a baseline, if needed).  The 



 
 

 

 
©2005 LogicLibrary, Inc.  14

Best Practices for Software Development Asset (SDA) Reuse 

service-provider team must be able to simultaneously maintain a 

production service while developing the next version of a 

service. 

•  Requirements Management / Defect Tracking. Organizations need to 

manage and document requirements and defects against a 

particular service on a version basis, noting the version 

against which the requirement or defect originated and the 

target version for resolution.  Most requirements management and 

defect tracking tools easily support this level of 

documentation. 

•  SDA Management.  Maintain all “valid” versions of a service 

within the SDA library.  At a minimum, consider defining these 

lifecycle states for the services: 

o “Under Development” – Only available for the requirements-

gathering and planning purposes of the application 

development team.  The service is not available for general 

development use. 

o “Production” – Generally Available (GA) version for use in 

new development. 

o “Retired” – Still in use by existing applications, but not 

available for use by new applications. 

o “Obsolete” – All applications should be migrated from this 

version.  The version metadata is maintained for 

traceability and audit purposes only. 

 

Best Practice #4: Delivering Web Services to Consumers via an                

Integrated Asset Metadata Library 

 

Ad-hoc Solutions Are Not Enough 

Ad-hoc distribution schemes may be sufficient for managing two or 

three services used by a small community, and even that is debatable 

since as long-term traceability is lost if organizations do not 

maintain service usage records from initial service deployment.  

However, ad-hoc approaches do not scale to meet the needs of larger 

SOA and reuse initiatives.  Spreadsheets and static Web sites used to 

distribute services rapidly become out-of-date.  Verbal, “call the 

architect” approaches to communicating knowledge about available and 



 
 

 

 
©2005 LogicLibrary, Inc.  15

Best Practices for Software Development Asset (SDA) Reuse 

planned services turn critical resources into information 

bottlenecks.  And, why build a repository and distract development 

teams from their core responsibilities when there is a proven, 

integrated, enterprise metadata library to buy?  Building a home-

grown library will also likely delay an SOA implementation and other 

application development and integration projects. 

 

A Registry Is Not a Repository 

UDDI registries are just that – a means of registering deployed 

services to enable operational late binding to one of many deployed 

service endpoints using a specific service (e.g., for purposes of 

failover, scalability and geographic distribution).  Any minimal 

repository capabilities in a UDDI registry are a side effect, not its 

intended purpose.  In short, a UDDI registry is not explicitly 

designed as a repository so it does not provide the functionality of 

a true repository.  For example, a UDDI registry has limited search 

metadata and cumbersome search interfaces more suited towards runtime 

look-up than human interaction; is not well suited to managing other 

SDA types, such as components, legacy application APIs and knowledge 

assets like design patterns; and is not well integrated into the 

development environment, particularly integrated development 

environment (IDE) tools.  To summarize, a UDDI registry is not a 

viable solution for meeting serious metadata repository requirements.    

 

Checklist for an Asset Metadata Library 

Ultimately, the objectives in selecting and deploying an asset 

metadata repository/library are to effectively govern reusable asset 

production, to make it easy for potential consumers of the assets to 

find them, and to track asset usage for purposes of change 

management, impact analysis, and ROI determination.  Accordingly, 

consider these important features when evaluating SDA libraries: 

 

√ Governed and configurable asset metadata assembly and validation 

o Standardized metadata definition 

o Per-asset-type metadata validation and enforcement 

√ Configurable (manual vs. automatic) asset publication 

o Newly defined SDAs 



 
 

 

 
©2005 LogicLibrary, Inc.  16

Best Practices for Software Development Asset (SDA) Reuse 

o Updated SDAs 

o New versions of existing SDAs 

o Organization-defined roles and review/approval processes 

√ Passive and active distribution modes 

o User-based SDA subscriptions 

o Automated search notifications during asset creation/ 

updating 

o Multiple search modes 

√ Project and asset-specific collaboration 

o Discussion forums 

o Persistent searches 

o Asset notifications 

√ Multiple UI options 

o Thin-client  

o Deep IDE integration 

o API-based integration 

 

 

Best Practice #5: Service Usage Traceability, Impact Analysis and 

Return on Investment 

Fast forward a bit.  Services have been built and deployed that are 

well aligned with the business architecture and business process 

needs.  They have been published into the asset metadata library so 

application development teams can easily find them.  Now, the first 

application projects are beginning to use the services.  So the reuse 

initiative is finished?  Not quite…  One of the key objectives of an 

SOA is to create a flexible set of reusable services that grows over 

time to support all of the key business processes.  This growth will 

inevitably result in changes to services that are already deployed 

(as discussed in best practice #3), making it necessary to understand 

who is using which assets.  In other words, consumption activities 

need to be scoped and tracked at a project level.  

 

Project-scoped, asset-consumption tracking allows for better control 

over where services are being used, enabling several critical 

activities.  With this level of tracking, a service-provider team can 

easily inform consuming applications of service versioning, guide 



 
 

 

 
©2005 LogicLibrary, Inc.  17

Best Practices for Software Development Asset (SDA) Reuse 

future investment towards the most heavily used services, and 

calculate the value of the dollar savings resulting from the reuse of 

a service and other assets (i.e., determine a return on investment 

(ROI) for the reuse initiative).  Each of the activities supported by 

consumption tracking deserves further discussion.  

 

Depending upon the business, the structure of the development 

organization, and other factors, an organization may need more or 

less control over the services being used by various application 

development projects.  At one extreme, an organization may want to 

encourage broad-based reuse of a set of core services, even going so 

far as to “pre-register” specific SDAs for a development team to use.  

At the other extreme, there may be certain assets which are highly 

sensitive due to privacy concerns, legal or compliance rules, trade 

secret preservation and other rationales. Limited information may be 

published about such SDAs, restricting access to sensitive artifacts 

until the necessary approvals and compliance checks have been 

completed.  The SDA library should support these widely varying 

consumption models through simple configuration settings. 

 

As discussed in best practice #3, effective versioning of services is 

key to producing a viable SOA over the long term; however, well 

managed versioning is meaningless if there isn’t a way to easily and 

automatically inform service consumers when new versions are planned 

and deployed so they can outline a graceful, controlled transition 

from the prior version.  Traceability through project-based 

consumption within an SDA library provides the information necessary 

to proactively manage downstream consumption of versioned services. 

In addition, early notification allows consumers to participate in 

the requirements-gathering process for a new version. 

Tracking which SDAs are used where quickly creates a picture of where 

future service development and maintenance are likely to be heaviest.  

After all, a service used by 10 different mainline applications is 

more likely to require enhancements and defect fixes than one used by 

a couple of analytical reporting applications.  This information is 

invaluable to management for resource planning and allocation.  It 

can also be used to recognize and reward service-production teams 



 
 

 

 
©2005 LogicLibrary, Inc.  18

Best Practices for Software Development Asset (SDA) Reuse 

that are generating heavily used services and groups that are 

consuming a broad range of services. 

 

Finally, since enterprises are in business to make profits, cost 

savings are often a major driver for implementation of an SOA or 

other SDA reuse initiative, especially at the executive “C level.”  

Without the ability to trace asset consumption, it becomes difficult, 

if not impossible, to quantitatively determine the savings (and 

resulting ROI) of a reuse initiative.  A leading metadata library 

will provide built-in ROI calculation reports based on proven reuse 

metrics developed by industry experts like Dr. Jeffrey Poulin2. 

 

Summary 

To be effective, an SOA or other reuse initiative needs to 

iteratively define the business context.  Work with business analysts 

to define and prioritize the business architecture, mixing top-down 

analysis and normalization with bottom-up, service-harvesting from 

existing systems, blending these two approaches based on project 

priority.  Align the existing application inventory against the 

prioritized business processes that result from this modeling effort.  

Don’t try to “boil the ocean.”  Instead, pick the key systems that 

support business needs, combining top-down and bottom-up approaches 

to service definition and implementation. 

 

As service production starts, define and manage the production, 

distribution, and consumption of services through a set of well-

defined review and approval processes.  The right tools, including an 

asset metadata library, are critical to supporting these processes 

and, ultimately, delivering quality assets to potential consumers.  

There is no need to define the perfect governance processes before 

deploying a metadata library; the processes will never be right the 

first time.  It is much more effective to deploy an “80%-solution” 

                                                 
2 Measuring Software Reuse: Principles, Practices and Economic Models, Jeffrey S. Poulin, Addison-Wesley, 1996. 



 
 

 

 
©2005 LogicLibrary, Inc.  19

Best Practices for Software Development Asset (SDA) Reuse 

into a series of pilot teams, get feedback and iteratively refine the 

processes side-by-side with the library.   

 

Treat services as independent “products.”  Recognize that development 

teams are no longer in the business of building monolithic 

applications.  They are building “application elements” with the 

flexibility to support multiple applications and long-lived enough to 

span multiple parallel versions in development, deployment and 

obsolescence. 

 

Finally, keep track of where services are being used.  Only through 

such traceability can an organization show how much money has been 

saved through an SOA or reuse initiative – and rightfully claim its 

hero status! 

 



 
 

 

 
©2005 LogicLibrary, Inc.  20

Best Practices for Software Development Asset (SDA) Reuse 

About the author 
Brent Carlson is vice president of technology and co-founder at LogicLibrary, Inc. Carlson drives the 
development and delivery of LogicLibrary’s products. He is a 17-year veteran of IBM, where he served as lead 
architect for the WebSphere Business Components project and held numerous leadership roles on the “IBM 
SanFrancisco Project.” He is the co-author of two books: SanFrancisco Design Patterns: Blueprints for Business 
Software (with James Carey and Tim Graser) and Framework Process Patterns: Lessons Learned Developing 
Application Frameworks (with James Carey). Carlson is also a frequent presenter at industry conferences, 
including Web Services EDGE 2005, Software Architecture Summit 2005, Enterprise Architect Summit 2004, 
Java Pro Live! 2004, Microsoft Tech-Ed 2004, Microsoft PDC 2003, IBM Rational Software Development User 
Conference 2004, regional user groups and Microsoft Architect Council meetings. He is a BEA Regional Director 
and was named to InfoWorld’s 2005 Top 25 CTOs. Carlson holds 16 software patents, with eight more currently 
under evaluation. 
 

About LogicLibrary 
LogicLibrary is the leading provider of software and services that make it possible for enterprises to manage and 
reuse software development assets (SDAs). The company’s patent-pending technology provides a 
comprehensive and collaborative approach for creating, migrating and integrating enterprise applications for use 
in service-oriented architecture, Web services and other software development initiatives. Additionally, 
LogicLibrary’s BugScan provides powerful, easy-to-use code-scanning technology that helps architects, 
developers and IT professionals ensure the highest levels of security throughout the software development 
lifecycle. For more information, visit www.logiclibrary.com. 
 


