Logiclibrary

Best Practices
for Software
Development
Asset (SDA)

Reuse

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

Introduction

Everyone agrees that reuse of software devel opnment assets (SDAs) is a
“good thing” and that service-oriented architectures (SOAs) require
organi zations to institutionalize services as reusable assets.
Nonet hel ess, there is considerable debate within |IT organizations as
to how to “get from here to there” - i.e., how to nmove from the
current state of |IT project developnent, wth its enphasis on
i medi ate, tinme-driven project objectives, to “SOA nirvana” wth

fl exible, | oosel y- coupl ed services t hat are pr oduced from
requirenents driven by core business processes, neet near-term
objectives and facilitate strategic business enablenent. Not an easy

task, but it is possible to nove towards this goal increnentally by
viewi ng devel opnent processes from the perspectives of SDA
production, distribution and consunpti on.

Some Terminology

To set the stage for the discussion, let’s begin with definitions for
SDA and SOA.

SDAs: Knowledge Assets and Executables with Maintainability,
Discoverability and Consumability

What is an SDA? Simply put, it is “something of value to an IT

organi zation.” This definition is generic for a reason: devel opnent
assets are so w de-ranging that an all-enconpassing definition nust
be necessarily vague; however, it <can be clarified by exanple.

Wthin the world of SDAs, there are two major types of assets:
know edge assets and executabl e assets. Knowl edge assets consist of
information used by the IT organization to do its work nore
consistently, efficiently and effectively. Exanpl es of know edge
assets include architectures, design patterns, processes, tenplates,
etc. Executable assets are the things nost technical people think of
when di scussing reuse: conponents, services, APIs, schemas and ot her
depl oyabl e packages. SDAs of both types are neant to be reused, so
speci al care nust be taken in their production.

©2005 LogicLibrary, Inc.

Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

What nmakes an asset reusabl e? For exanple, does a J2EE conponent
become an asset sinply by providing its jar file? Probably not,
unl ess the component’s functionality is extrenmely sinple and very

obvi ous. Wiile the deployable jar is a very inportant work product
(i.e., artifact) of the software developnent process, it does not
nmake the conponent an asset in and of itself. In order for sonething
to be considered an asset to the |IT organization, it nust be

mai nt ai nabl e, di scoverabl e and consumabl e.

« Miintainability introduces such concepts as version control
(discussed in nore detail below, nodels and other design
docunentation, as well as requirenents traceability (why the
asset was inplenmented in this way from a technical and business
per spective).

- Discoverability neans potential consunmers of an asset can find
it in a timely fashion - for exanple, via keywrds, domain
t axonomi es or nodels to which the assets are mapped.

« Consumability involves looking at an asset from the point of
view of a future project that mght use the asset: are a user
guide, a well docunented API, sanple client code and other
artifacts available to help the user rapidly understand how to
apply the asset to a project? Are dependencies to other assets
(and to prior versions of this asset) specified and easily
navi gat ed?

The process of building an asset creates netadata that represents the

asset — describing the asset from various points of view Thi s
nmet adata presents a conposite view of the asset across its entire
devel opmrent and deploynment |ifecycle, with indexes (or references)

into the various point tools that hold the work products associated
with the asset, such as docunent managenent systens, requirenents
managenent systens, version control repositories, defect tracking
systens, test automation tools, etc.

©2005 LogicLibrary, Inc.

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

SOA Key Concepts: Core Application Functions, Coarse-Grained Services

and Message-Oriented Infrastructure

For a concept that has probably reached the peak of its hype cycle, a
surprising amount of debate and confusion over what constitutes a
service-oriented architecture continues to exist. Much of this
debate tends to get stuck in technical details, perhaps because the
technol ogy infrastructure nost frequently associated with SOA - Wb

services — is still maturing as standards evolve and organizations
i ke W51 define preferred interoperational nodes of service
depl oynent . In short, conversations about SOA seem to stall at the

techni cal | evel because Wb service technology remains in flux.

Looki ng beyond pure technology, sone core concepts rise above the
technical nmuck to help define the fundanentals of a service-oriented
architecture. An SOA provides for the definition and delivery of
core application functions through a series of coarse-grained
servi ces meant to be assenbled through a nessage-oriented
infrastructure.

Enabl i ng Core Application Functions

First, an SOA nust support the delivery of <core application
functi ons. To clarify, this is not a coment about releasing
applications. It is a statenent about enabling a devel opment process
that delivers business value by being flexible and responsive so
hi gh-quality applications are delivered faster, for better service
and conpetitive advantage. An SCA nust yield appropriately decoupl ed

services that can support nmultiple applications - both end-user
(customer, partner, and internal) and nachine-facing - wthout
service reinplenmentation. Services nust be reusable wthout major

rework, or they just add Yet Another Layer O Technol ogy (YALOI) to
an already nessy technical infrastructure.

Coarse-Gained Services — “Right-Sized” for Application Assenbly

Services within an SOA nust be sufficiently coarse-grained to enable
meani ngf ul assenbly of applications. Ri ght-sizing services for this
purpose is one of the nore challenging issues facing architecture
teans instituting an SOA At one extrene, services which support

©2005 LogicLibrary, Inc.

Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

get custoner’s mddle nane” (for exanple) are far too fine-grained

for easy reuse in application assenbly (and any resulting
applications built from such services will perform abysmally), while
services t hat i mpl enent top-1 evel, end- user - faci ng busi ness

processes, such as “close accounting books for fiscal year,” are too
broad and conpletely inpractical to inplenent. Finding the right
m ddle ground of services that can support nultiple business
processes wth appropriate granularity 1is probably the biggest
chall enge to an I T organi zation

Tying Services Together with a Message-Oiented Infrastructure
Services are of no use if they cannot be consumed wthin actual
appl i cati ons. Tying them together into business process flows is
typically conpleted through nessage passing, often wth an
orchestration engine of sone sort mamintaining the |ong-running
process state.

Getting to “SOA Nirvana”

Wth termnology established, it is time to discuss how an
organi zation can begin to roll out an effective SOA strategy. Thi s
conversation does not start wth the bits and bytes of SOA
i nfrastructure. Such an infrastructure is clearly necessary as a

technol ogy underpinning to support a deployed SOA but it is
insufficient as a guide for SCA definition and devel opnent. The nost
appropriate place to start the dialogue is with proper architectura
and project governance, which is required to “put your |IT house in
order.” These processes prioritize the devel opnent of services
while keeping the broader objectives of SOA in mnd. They al so
ensure that services are built with sufficient security, quality and
consumability so that downstream consuners can easily find,
understand and register their use of the services in application and
busi ness process integration projects.

Al'l of these objectives fit under the unbrella of “SOA governance,”
the neans by which enterprise architecture teans oversee |IT

©2005 LogicLibrary, Inc.

Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

devel opnent projects and |IT project teans provide feedback on that
gui dance.

1T PROJECT
 MANAGEMENT
.._

Wthin this “big-animal” governance |ifecycle, a supporting lifecycle
for asset reuse becones Vi si bl e: asset producti on, asset
di stribution, and asset consunption.

Software Reuse: A Value-add Process

Froducer Distributor Consumer
Joroker
; *Package | re-factor for reuse)
'mﬁlﬁgedm domain «Sell reﬂse: publicity and ‘Sii‘:iz:?ﬂwqm in context of
marketing equirements
hake build [buy decisions #atch supply & demand «Understand software gaps
Allocate SDA funds *Focus on governance & “Provide fesdback
compliance

SDA Catalog

|
©2005 LogicLibrary, Inc.

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

The remai nder of this paper discusses five best practices within the
asset-reuse |lifecycle.

Asset Reuse Best Practices

Best Practice #1: Pragmatic Service Interface Mddeling and Definition

Going back to the original definition of SOA one of the key aspects
of an SOA is that the services defined and deployed within the
architecture nust provide core application functions to potential
CONSumers. This is easier said than done. Services within an SOA
cannot be effectively developed in a “bottomup,” ad-hoc nmanner.
Bottom up devel opnent of services is inherently driven by imediate
project needs — how do | solve this specific problemwth a specific
i npl enentation (often driven by the influence of exi sting
applications and their behaviors nmasquerading as true business
requirenents). What happens when an organization defines and
inmplements its services with this mndset? The service layer sinply
becones YALOT - nore spaghetti code that inplenents a nonolithic
application in a different technology instead of inproving business
process flexibility.

But, services also cannot be defined solely in a “top-down” manner.
Top-down business process analysis left to its own devices often

leads to one of tw outconmes: “analysis paralysis,” continual
refinement of a nodel hoping to reach perfection (which never cones),
or “Big-Bang” projects that try to “boil the ocean” - defining and

i npl enmenting everything at once, usually wth disastrous consequences
(“death march” projects, schedule slips and/or cost overruns).

So where to go from here? The objective is to design and inplenent
busi ness services that support the imrediate project’s requirenents
with enough flexibility to meet future business process needs, both
projected and unknown. This is a pretty stiff challenge and one that
is not likely to be met in a single step. In reality, there nust be a
pragmati c bal ance between where the business is and where it needs to
go, noving services towards the objective in iterations.

©2005 LogicLibrary, Inc.

I |
1 [[
Best Practices for Software Development Asset (SDA) Reuse

Logiclibrary

These iterations should nove the service towards the goal of building
a coarse-grained business architecture (or nodel). The coarse-
grai ned business nodel should be driven by key business processes
(itnitially, a representative set of high-priority processes).
Architects and business analysts should use these processes to

extract and define a normalized set of functions that are grouped

t oget her based on behavioral affinity (or, in UML terns, conponents
and interfaces) to create a strawnman set of initial, target
definitions for the services. This effort creates a roadmap for

prioritized service definition and devel opnent.

<<comp spec>>
O Order System

OrderMaintanance

<<comp spec>> | —
Oi Shipping System ShippingRequest
ShippingStatu

J

v
- o |
ShippingMethod Management |
SalesTaxCalculatio$
O Import | |
|
Reporting | |

<<comp spec>> /
Analytical System

<<comp spec>>
SalesTaxCalculatol

<<comp spec>>
CreditCard Handle

—0

Verification

<<comp spec>>
Financial
Accounting O

FinancialReporting

O

| Sales Transacton __—
- | —
Prediction

<<comp spec>> “ _—
Currency Exchange % ,/:///
System

Conversion

O

CurrencyMaintanance

Has the exact set of services and operations been defined as a result
of this top-down nodeling activity? O course not, but it has
produced a starting point for the real work — the detailed analysis,
design and inplenentation of the services necessary for the current
set of prioritized projects. The needed services are identified from
t he business reference nodel, based on business process (and project)

©2005 LogicLibrary, Inc.

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

prioritization, and their definitions are formalized. | deal Iy, each
service definition should be driven by the requirenents extracted
fromat |east two separate processes. Oherw se, designhing a service
based on a single use case wll probably result in a fragile,
narrow y-defined service that will not be flexible enough to neet the
needs of the next set of prioritized projects. Formal i zi ng service
definitions may lead to nodifications in the reference nodel,
including the identification of new services — which is just fine
This is the first step in iteratively refining the business
architecture.

Once the service interface is specified, project teans can proceed
with detailed service design and inplenentation. Oten, this neans
assessing the current set of production applications to understand
whi ch aspects of the applications are candidates to support required

servi ces, and t hen comnbi ni ng and re-factoring application
capabilities by inplenenting adapters that provide the necessary gl ue
and conpensation | ogic. Usual |y, these adapters are inplenented

behind a conponent facade which may have been generated from the
original service definition, as specified in WoDL (or, alternatively,
service operations nmay have been defined as nmethods on a conponent
interface, with a WDL docunent and service client proxy code
generated fromthat starting point).

Best Practice #2: Production Lifecycle Review Points

As nentioned above, we need to ensure that the defined and
i npl enented services are properly aligned wth the enterprise
architecture, use correct inplenentation techniques and technol ogies,
and provide enough supporting information to enable potential
consuners to rapidly discover and understand them How is this
acconpl i shed? By applying appropriate review points in the software
devel opnment lifecycle (SDLC) and defining a virtual/matrixed SDA
architectural review teamto conplete these reviews.

©2005 LogicLibrary, Inc.

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

VWho should be on this review teanf

« A team | eader drawn from the enterprise architecture
organi zati on whose dedicated responsibility is building a
successful SDA reuse program

- Mtrixed team nenbers drawn from participating project teans.
The nmenbers should have |ead designer/developer skills, and
their work on this team should be recognized and allocated as
10% 20% of their job responsibility. Assignnent to this team
should be pronpbted as a talent-recognition award and a growth
assignnment for the individuals involved. A rotating nenbership
(perhaps six to 12 nonths in duration) serves to train younger
devel opers in architectural principles and then allows them to
carry that know edge back to their project teans, increasing the
overall skill level of those teans.

Consi deration should also be given to including nenbers from the
busi ness anal yst organi zation to ensure that the business
functionality defined by a service truly reflects the enterprise’s
requirenents.

The primary responsibility of the teamis to review services under

devel opment. The objectives of this review wll vary dependi ng upon
the stage wthin the SDLC to which a particular service has
progr essed. At a mninum it is recomended that organizations

review services under developnent at the followng points in the
SDLC:

« Requirenents conplete: Al business requirenents are docunented
and the initial service definition has been specified (ideally
as WBDL) so reviewers can validate the service against its
busi ness architectural context.

- Design conplete: The inplenentation approach has been defined

with sufficient docunentation (e.g., UML design nodels
conpleted, relevant legacy APlIs identified) to allow reviewers
to val i dat e t he desi gn agai nst t echni cal and

application/integration architectural contexts.

©2005 LogicLibrary, Inc.

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

« Inmplenmentation conplete: The service has been inplenented and
deployed in a test environment, wth sufficient supporting
docunentation (e.g., sanple client code, automated/ manual test
cases and test results, usage guide) to enable a potential
consunmer to understand the service and trust its quality and
stability.

O her review points may also be appropriate based on organi zati ona
needs and objectives. However, do not overwhel m devel opnent teans
with process for the sake of process. They w Il quickly revolt
agai nst junping through seemngly arbitrary hoops. The objective
should be “just enough process” to provide appropriate guidance at
key points in the production and consunption Ilifecycles to keep
things on track. Just as right-sizing a service may be iterative
finding the right level of process control for the organization nay
be iterative also. Consider starting with as “light” a process as is
feasi bl e and addi ng nore process steps only as needed.

Appropriate tooling can greatly assist organizations in effectively
deploying their governance processes. In fact, applying process to
product in a pilot project is an ideal way to validate and
iteratively refine the process. I ndustry expert Donald J. Reifer,
when discussing how to inplenent a practical reuse program states,
“.using a pilot project to denonstrate the value added from a well -
designed and deployed infrastructure is highly encouraged. Pilot
projects force senior managers, mddle managers and technol ogists to
determ ne how to take the technology and use it in concert with the
organi zation’s process under real budget, schedul es and constraints.”?!

Once a service’'s review has been conpleted, the team makes it
avai lable to the broader comunity. An asset netadata library can be
of great assistance in this process since it provides automated asset
validation and supports the steps in the review process wth
confi gurabl e, rol e- based approval mechani sns t hat i ncl ude
notifications and audit trail functionality. After publication to a

'Donald J. Reifer , “Implementing a Practical Reuse Program,” Component-Based Software Engineering, pp. 453-466

©2005 LogicLibrary, Inc.

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

nmetadata library, potential consuners are free to discover the
service and its capabilities, provide feedback and incorporate the
service into their devel opment projects.

It is likely that inplenmenting an SDA review teamw || have sonme very
usef ul side effects. Formng such a team can break down
organi zational barriers, helping to mtigate any potential politica

i ssues associated with a reuse initiative. Sinply put, creating this
type of team can elimnate the “us vs. theni nentality that often
occurs when governance organizations and top-down processes are
i nposed on devel opnent organi zations. The review teamalso is likely
to discover additional opportunities for reusable services (and
enhancenents that make existing services nore robust and reusable)
t hrough their informal conmunication. This “active discovery” of new
reusabl e capabilities can accelerate the creation and adoption of
services within the SOA initiative.

Best Practice #3: Mnagi ng Produced Services as Internal “Products”
As services begin to roll out and are consumed within projects, an

organi zation wll rapidly reach the point where the next set of
busi ness process requirenents affects one or nore of the existing
servi ces. How will the new process be supported while preserving a

stabl e operating environment for existing service consuners? Because
services (like conponents) are neant to be used in nore than one

appl i cation, organi zations need to plan for the increnental
enhancenment of their services over a long deploynent lifetine. In
effect, organizations planning to build a robust, stable and

extensible SOA need to treat their services as “products.”

What does treating a service as a “product” nmean to an IT
or gani zati on?

- Each produced service nust have a regular and well-defined

rel ease cycle. This release cycle needs to occur often enough
to neet consuner needs on a tinely basis, but not so often as to
churn existing consuners. Typically, a release cycle between

three and six nonths is appropriate for nost organizations,

©2005 LogicLibrary, Inc.

Best Practices for Software Development Asset (SDA) Reuse

Logiclibrary
]

allowing them to neet new service needs wthout unduly
di srupting existing applications.

Servi ces nust preserve backward conpatibility wherever possible.
Deprecation techniques provide tine to mgrate to newer service
releases by identifying obsolete operations and notifying
existing consuners that the operation wll be renoved from
future releases of a service interface (also known as “end of
l[ife-ing” in product managenent terns). Service providers
should offer n-1 version support at a mnimum — all services
provided in the prior version (except those nmarked as
deprecated) should be preserved intact in the current version.
In addition, consider providing a “grace period” where both
service versions are supported so consunmers can nake any

necessary changes to integrate the updated service. Dynam c
runtinme binding techniques via a Wb services nanagenent
infrastructure (e.g., service proxies or UDDI-based Ilate

binding) can also sinplify the process of mgration from an
ol der service to a new version

A mechani sm nmust be established by the enterprise architecture
team and service-review team to gather new requirenents and

enhancenents for services. Consi der establishing a “product
manager” role wthin these organizations to rmnage and
prioritize the aggregate set of business requirenents for a
servi ce. The product manager should solicit feedback from

current and potential consuners of the service, consolidate
those requirenents and codify them (with the assistance of the
enterprise architecture tean) for eventual inplenentation by
servi ce devel opnent teans.

Treating services as “products” has a clear inpact on SDLC tools used

within the devel opnent teans. Sonme exanmples of +these inpacts
i ncl ude:
« Version Control. Be prepared to establish a source code

©2005 LogicLibrary, Inc.

baseline within the version control repository whenever a new
version of a service is released into production (or create a
thread label for later use as a baseline, if needed). The

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

service-provider team nust be able to sinultaneously maintain a
production service while developing the next version of a
servi ce.

« Requirenments Managenent / Defect Tracking. Organizations need to
manage and docunent requirenents and defects against a
particular service on a version basis, noting the version
against which the requirement or defect originated and the
target version for resolution. Mst requirenents managenent and

def ect t racki ng tool s easily support this | evel of
docunent ati on.
- SDA Managenent. Maintain all *“valid” versions of a service

within the SDA |ibrary. At a mnimm consider defining these
lifecycle states for the services:

o “Under Developnment” — Only available for the requirenents-
gathering and planning purposes of the application
devel opnment team The service is not available for general
devel opnent use.

o “Production” — Generally Available (GA) version for use in
new devel opnent .

0 “Retired” — Still in use by existing applications, but not
avai |l abl e for use by new applications.

0 “Qbsolete” — Al applications should be mgrated fromthis
versi on. The version netadata is maintained for

traceability and audit purposes only.

Best Practice #4: Delivering Wb Services to Consuners via an
| nt egrated Asset Metadata Library

Ad- hoc Sol utions Are Not Enough

Ad- hoc distribution schenmes nay be sufficient for managing two or
three services used by a small community, and even that is debatable
since as long-term traceability is lost if organizations do not
mai ntain service usage records from initial service deploynent.
However, ad-hoc approaches do not scale to neet the needs of |arger
SOQA and reuse initiatives. Spreadsheets and static Wb sites used to
distribute services rapidly beconme out-of-date. Verbal, “call the
architect” approaches to comrunicating know edge about avail able and

©2005 LogicLibrary, Inc. 14

Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

|
pl anned services turn critical resour ces into i nformation
bot t| enecks. And, why build a repository and distract devel opnent

teans from their core responsibilities when there is a proven
integrated, enterprise netadata library to buy? Building a home-
grown library will also likely delay an SOA inplenentation and ot her
appl i cation devel opment and integration projects.

A Registry Is Not a Repository

UDDI registries are just that — a means of registering deployed
services to enable operational late binding to one of many depl oyed
service endpoints using a specific service (e.g., for purposes of
failover, scalability and geographic distribution). Any m ni mal
repository capabilities in a UDDI registry are a side effect, not its
i nt ended purpose. In short, a UDD registry is not explicitly
designed as a repository so it does not provide the functionality of
a true repository. For exanple, a UDDI registry has limted search
nmet adata and cunbersone search interfaces nore suited towards runtine
| ook-up than human interaction; is not well suited to managi ng other
SDA types, such as conponents, |egacy application APIs and know edge

assets |like design patterns; and is not well integrated into the
devel opnent envi ronnent , particularly i nt egrated devel opnent
environnment (I1DE) tools. To sunmarize, a UDDI registry is not a

vi abl e solution for neeting serious netadata repository requirenents.

Checklist for an Asset Metadata Library

Utimately, the objectives in selecting and deploying an asset
net adata repository/library are to effectively govern reusable asset
production, to make it easy for potential consuners of the assets to
find them and to track asset wusage for purposes of change
managenent, inpact analysis, and RO determ nation. Accordi ngly,
consi der these inportant features when evaluating SDA |ibraries:

v Governed and configurabl e asset netadata assenbly and validation
o Standardi zed netadata definition
0 Per-asset-type netadata validation and enforcenent

v Configurable (manual vs. automatic) asset publication
o0 Newly defined SDAs

©2005 LogicLibrary, Inc.

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

o Updated SDAs

o New versions of existing SDAs

o Organi zation-defined roles and revi ew approval processes
v Passive and active distribution nodes

0 User-based SDA subscriptions

o Automated search notifications during asset creation/

updati ng

o Miltiple search nodes
v Project and asset-specific collaboration

o Discussion forums

0 Persistent searches

o Asset notifications
v Multiple U options

o Thin-client

o Deep IDE integration

0 API-based integration

Best Practice #5: Service Usage Traceability, Inpact Analysis and
Return on | nvest ment

Fast forward a bit. Servi ces have been built and deployed that are
well aligned with the business architecture and business process
needs. They have been published into the asset netadata library so
application devel opnment teans can easily find them Now, the first
application projects are beginning to use the services. So the reuse
initiative is finished? Not quite... One of the key objectives of an
SOA is to create a flexible set of reusable services that grows over
time to support all of the key business processes. This growmh wll
inevitably result in changes to services that are already deployed
(as discussed in best practice #3), making it necessary to understand
who is using which assets. In other words, consunption activities
need to be scoped and tracked at a project |evel.

Proj ect - scoped, asset-consunption tracking allows for better contro
over where services are being wused, enabling several critical
activities. Wth this level of tracking, a service-provider team can
easily inform consum ng applications of service versioning, guide

©2005 LogicLibrary, Inc.

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

future investnent towards the nost heavily wused services, and
calculate the value of the dollar savings resulting fromthe reuse of
a service and other assets (i.e., determne a return on investnent
(RO) for the reuse initiative). Each of the activities supported by
consunption tracking deserves further discussion.

Depending upon the business, the structure of the devel opnent
organi zation, and other factors, an organization may need nore or
|l ess control over the services being used by various application
devel opnent proj ects. At one extrenme, an organization may want to
encour age broad-based reuse of a set of core services, even going so
far as to “pre-register” specific SDAs for a devel opnment teamto use.
At the other extrene, there nay be certain assets which are highly
sensitive due to privacy concerns, legal or conpliance rules, trade
secret preservation and other rationales. Limted information may be
publ i shed about such SDAs, restricting access to sensitive artifacts
until the necessary approvals and conpliance checks have been
conpl et ed. The SDA |ibrary should support these wdely varying
consunption nodel s through sinple configuration settings.

As discussed in best practice #3, effective versioning of services is
key to producing a viable SOA over the long term however, well
managed versioning is neaningless if there isn't a way to easily and
automatically inform service consuners when new versions are planned
and deployed so they can outline a graceful, controlled transition
from the prior wversion. Traceability through project-based
consunption within an SDA |ibrary provides the infornmation necessary
to proactively manage downstream consunption of versioned services.
In addition, early notification allows consunmers to participate in
t he requi rement s-gat hering process for a new version.

Tracki ng which SDAs are used where quickly creates a picture of where
future service devel opnment and maintenance are |likely to be heaviest.

After all, a service used by 10 different mainline applications is
nore likely to require enhancenents and defect fixes than one used by
a couple of analytical reporting applications. This information is
i nval uable to managenent for resource planning and allocation. | t

can also be used to recognize and reward service-production teans

©2005 LogicLibrary, Inc.

a
Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

that are generating heavily used services and groups that are
consum ng a broad range of services.

Finally, since enterprises are in business to make profits, cost
savings are often a mjor driver for inplementation of an SOA or
other SDA reuse initiative, especially at the executive “C |evel.”
Wthout the ability to trace asset consunption, it becones difficult,
if not inpossible, to quantitatively determne the savings (and
resulting RO) of a reuse initiative. A leading netadata |ibrary
will provide built-in RO calculation reports based on proven reuse
metrics devel oped by industry experts like Dr. Jeffrey Poulin?

Summary

To be effective, an SOA or other reuse initiative needs to
iteratively define the business context. Wrk with business analysts
to define and prioritize the business architecture, mxing top-down
analysis and normalization with bottomup, service-harvesting from
exi sting systens, blending these two approaches based on project

priority. Align the existing application inventory against the
prioritized business processes that result fromthis nodeling effort.
Don't try to “boil the ocean.” | nstead, pick the key systens that

support busi ness needs, conbining top-down and bottom up approaches
to service definition and inplenentation.

As service production starts, define and mnmanage the production,
distribution, and consunption of services through a set of well-
defined review and approval processes. The right tools, including an
asset netadata library, are critical to supporting these processes
and, ultimately, delivering quality assets to potential consuners.
There is no need to define the perfect governance processes before
deploying a netadata library; the processes will never be right the
first time. It is nuch nore effective to deploy an “80% sol ution”

? Measuring Software Reuse: Principles, Practices and Economic Models, Jeffrey S. Poulin, Addison-Wesley, 1996.

©2005 LogicLibrary, Inc.

1N

| I |

T

amEs
Best Practices for Software Development Asset (SDA) Reuse Lo g icLibra r'l_-l
]

into a series of pilot teanms, get feedback and iteratively refine the
processes side-by-side with the library.

Treat services as independent “products.” Recognize that devel opnent
teans are no longer in the business of building nonolithic
appl i cati ons. They are building “application elenents” wth the

flexibility to support nmultiple applications and |ong-lived enough to
span nultiple parallel versions in developnent, deploynent and
obsol escence.

Finally, keep track of where services are being used. Only through
such traceability can an organization show how much noney has been
saved through an SQOA or reuse initiative — and rightfully claimits
hero st at us!

©2005 LogicLibrary, Inc.

Logiclibrary

Best Practices for Software Development Asset (SDA) Reuse

About the author

Brent Carlson is vice president of technology and co-founder at LogicLibrary, Inc. Carlson drives the
development and delivery of LogicLibrary’s products. He is a 17-year veteran of IBM, where he served as lead
architect for the WebSphere Business Components project and held numerous leadership roles on the “IBM
SanFrancisco Project.” He is the co-author of two books: SanfFrancisco Design Patterns: Blueprints for Business
Software (with James Carey and Tim Graser) and Framework Process Patterns: Lessons Learned Developing
Application Frameworks (with James Carey). Carlson is also a frequent presenter at industry conferences,
including Web Services EDGE 2005, Software Architecture Summit 2005, Enterprise Architect Summit 2004,
Java Pro Live! 2004, Microsoft Tech-Ed 2004, Microsoft PDC 2003, IBM Rational Software Development User
Conference 2004, regional user groups and Microsoft Architect Council meetings. He is a BEA Regional Director
and was named to InfoWorld’s 2005 Top 25 CTOs. Carlson holds 16 software patents, with eight more currently
under evaluation.

About LogiclLibrary

LogicLibrary is the leading provider of software and services that make it possible for enterprises to manage and
reuse software development assets (SDAs). The company’s patent-pending technology provides a
comprehensive and collaborative approach for creating, migrating and integrating enterprise applications for use
in service-oriented architecture, Web services and other software development initiatives. Additionally,
LogicLibrary’s BugScan provides powerful, easy-to-use code-scanning technology that helps architects,
developers and IT professionals ensure the highest levels of security throughout the software development
lifecycle. For more information, visit www.logiclibrary.com.

©2005 LogicLibrary, Inc. 20

